By Topic

Genetic-algorithms-based approach to self-organizing feature map and its application in cluster analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mu-Chun Su ; Dept. of Electr. Eng., Tamkang Univ., Tamsui, Taiwan ; Hsiao-Te Chang

In the traditional form of the self-organizing feature map (SOFM) algorithm, the criterion for stopping training is either to terminate the training procedure when no noticeable changes in the feature map are observed or to stop training when the number of iterations reaches a prespecific number. In this paper we propose an efficient method for measuring the degree of topology preservation. Based on the method we apply genetic algorithms (GAs) in two stages to form a topologically ordered feature map. We then use a special method to interpret a SOFM formed by the proposed GA-based method to estimate the number and the locations of clusters from a multidimensional data set without labeling information. Two data sets are used to illustrate the performance of the proposed methods

Published in:

Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on  (Volume:1 )

Date of Conference:

4-8 May 1998