By Topic

Dual-Polarization GNSS-R Interference Pattern Technique for Soil Moisture Mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Alonso Arroyo, A. ; Dept. of Signal Theor. & Commun., Univ. Politec. de Catalunya, Barcelona, Spain ; Camps, A. ; Aguasca, A. ; Forte, G.F.
more authors

The interference pattern technique (IPT) consists of the coherent addition of the direct and reflected global navigation satellite systems (GNSS) signals in the receiving antenna. The detected power oscillates (fading), and the amplitude of these oscillations is very sensitive to the soil reflection coefficient at the specular reflection point. Therefore, variations of the reflection coefficient can be mapped, and thus dielectric constant variations, from which soil moisture can be retrieved. This work extends the use of the IPT technique from vertical polarization (V-Pol) to horizontal polarization (H-Pol). Moreover, the IPT equations are reformulated to facilitate the combination of dual-polarization retrievals. Simulations of the interference patterns at V- and H-Pol are presented for different soil moisture conditions. An upgrade of the SMIGOL GNSS-R instrument for dual-polarization observations is presented. This instrument was deployed in a flat, dry grassland in Yanco, Australia, in order to validate the proposed concepts. Finally, a comparison between the data retrieved from the SMIGOL instrument and the ground-truth soil moisture data is presented showing a good agreement between them and rainfall information.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 5 )