By Topic

0.3–4.3 GHz Frequency-Accurate Fractional- N Frequency Synthesizer With Integrated VCO and Nested Mixed-Radix Digital \Delta - \Sigma Modulator-Based Divider Controller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Michael Peter Kennedy ; Sch. of Eng.-Electr. & Electron. Eng., Univ. Coll. Cork, Cork, Ireland ; Hongjia Mo ; Brian Fitzgibbon ; Austin Harney
more authors

If the modulus of the digital delta-sigma modulator (DΔΣM) in a fractional- N frequency synthesizer is a power of two, then the output frequency is constrained to be a rational multiple of the phase detector frequency (fPD), where the denominator of the rational multiplier is a power of two. If the required output frequency is not related to fPD in this way, one is forced to approximate the ratio by using a small programmable modulus DΔΣM or a very large power-of-two modulus. Both of these solutions involve additional hardware. Furthermore, the programmable modulus solution can suffer from spurs, while the large power of two lacks accuracy. This paper presents a new solution, based on mixed-radix algebra, where the required ratio is formed by combining two different moduli. The programmable modulus solves the accuracy problem, while the large power-of-two modulus minimizes the spur content. In addition, the phase detector can be clocked at high speed. This paper explains the theoretical foundations of the method, elaborates a design methodology, and presents measured results for an 0.18 μm SiGe BiCMOS prototype.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:49 ,  Issue: 7 )