Cart (Loading....) | Create Account
Close category search window
 

Fast design of reduced-complexity nearest-neighbor classifiers using triangular inequality

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eel-Wan Lee ; Sch. of Electr. Eng., Seoul Nat. Univ., South Korea ; Soo-Ik Chae

We propose a method of designing a reduced complexity nearest-neighbor classifier with near-minimal computational complexity from a given nearest-neighbor classifier that has high input dimensionality and a large number of class vectors. We applied our method to the classification problem of handwritten numerals in the NIST database. If the complexity of the RCNN classifier is normalized to that of the given classifier, the complexity of the derived classifier is 62 percent, 2 percent higher than that of the optimal classifier. This was found using the exhaustive search

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:20 ,  Issue: 5 )

Date of Publication:

May 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.