By Topic

Business Intelligence from Social Media: A Study from the VAST Box Office Challenge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

With over 16 million tweets per hour, 600 new blog posts per minute, and 400 million active users on Facebook, businesses have begun searching for ways to turn real-time consumer-based posts into actionable intelligence. The goal is to extract information from this noisy, unstructured data and use it for trend analysis and prediction. Current practices support the idea that visual analytics (VA) can help enable the effective analysis of such data. However, empirical evidence demonstrating the effectiveness of a VA solution is still lacking. A proposed VA toolkit extracts data from Bitly and Twitter to predict movie revenue and ratings. Results from the 2013 VAST Box Office Challenge demonstrate the benefit of an interactive environment for predictive analysis, compared to a purely statistical modeling approach. The VA approach used by the toolkit is generalizable to other domains involving social media data, such as sales forecasting and advertisement analysis.

Published in:

Computer Graphics and Applications, IEEE  (Volume:34 ,  Issue: 5 )