By Topic

Automated Underwater Object Recognition by Means of Fluorescence LIDAR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Matteoli, S. ; Dept. of Inf. Eng., Univ. of Pisa, Pisa, Italy ; Corsini, G. ; Diani, M. ; Cecchi, G.
more authors

This paper focuses on automated recognition of underwater objects by means of light detection and ranging (LIDAR) systems. Differently from most works involved in underwater object recognition with LIDAR, where objects are recognized by their shape, here the interest is distinguishing objects on the basis of physical/chemical properties of object materials. To this aim, laser-induced fluorescence (LIF) spectroscopy is exploited, and an ad hoc signal processing chain is presented to effectively analyze the LIF spectra extracted at the detected object-range. Specifically, the goal is that of automatically recognizing the detected object with respect to a database (DB) of objects of interest, which have been previously spectrally characterized by means of laboratory fluorescence measurements. To this aim, suitable physics-based methodologies are proposed to compensate the signal for water-column effects. A decision-theory-based framework is developed to approach spectral recognition of the detected object with respect to the object DB. Experimental results from a laboratory test-bed show that the proposed processing chain is effective at automatically recognizing objects submerged in an artificial water column at different depths, based on a diverse DB of sample materials. The presented approach is shown to provide great potential for automated object recognition in marine and other water environments.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:53 ,  Issue: 1 )