Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Feature-based surface decomposition for correspondence and morphing between polyhedra

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gregory, A. ; Dept. of Comput. Sci., North Carolina Univ., Chapel Hill, NC, USA ; State, A. ; Lin, M.C. ; Manocha, D.
more authors

Presents a new approach for establishing correspondence between two homeomorphic 3D polyhedral models. The user can specify corresponding feature pairs on the polyhedra with a simple and intuitive interface. Based on these features, our algorithm decomposes the boundary of each polyhedron into the same number of morphing patches. A 2D mapping for each morphing patch is computed in order to merge the topologies of the polyhedra one patch at a time. We create a morph by defining morphing trajectories between the feature pairs and by interpolating them across the merged polyhedron. The user interface provides high-level control as well as local refinement to improve the morph. The implementation has been applied to several complex polyhedra composed of thousands of polygons. The system can also handle non-simple polyhedra that have holes

Published in:

Computer Animation 98. Proceedings

Date of Conference:

8-10 Jun 1998