By Topic

Mining Urban Deprivation from Foursquare: Implicit Crowdsourcing of City Land Use

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Research has shown a relationship between the physical characteristics of a city neighborhood (such as the presence of playgrounds and fast-food outlets) and neighborhood deprivation as defined in socioeconomic indices. Official land-use data has often been the source for such research. This article examines the viability of using social-networking data as an alternative source. The authors study all venues on the Foursquare location-mapping application across a variety of London census areas. They study the relationship between the presence of different venues in an area and its score on the socioeconomic Index of Multiple Deprivation. They conclude that knowing which venues are hosted by which community offers not only insights into neighborhood deprivation but also a reasonable way of predicting community deprivation scores at fine-grained temporal resolutions. This article is part of a special issue on pervasive analytics and citizen science.

Published in:

Pervasive Computing, IEEE  (Volume:13 ,  Issue: 2 )