By Topic

Network-Based Methods to Identify Highly Discriminating Subsets of Biomarkers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Seyed Javad Sajjadi ; Department of Industrial and Management Systems Engineering, University of South Florida, Tampa ; Xiaoning Qian ; Bo Zeng ; Amin Ahmadi Adl

Complex diseases such as various types of cancer and diabetes are conjectured to be triggered and influenced by a combination of genetic and environmental factors. To integrate potential effects from interplay among underlying candidate factors, we propose a new network-based framework to identify effective biomarkers by searching for groups of synergistic risk factors with high predictive power to disease outcome. An interaction network is constructed with node weights representing individual predictive power of candidate factors and edge weights capturing pairwise synergistic interactions among factors. We then formulate this network-based biomarker identification problem as a novel graph optimization model to search for multiple cliques with maximum overall weight, which we denote as the Maximum Weighted Multiple Clique Problem (MWMCP). To achieve optimal or near optimal solutions, both an analytical algorithm based on column generation method and a fast heuristic for large-scale networks have been derived. Our algorithms for MWMCP have been implemented to analyze two biomedical data sets: a Type 1 Diabetes (T1D) data set from the Diabetes Prevention Trial-Type 1 (DPT-1) study, and a breast cancer genomics data set for metastasis prognosis. The results demonstrate that our network-based methods can identify important biomarkers with better prediction accuracy compared to the conventional feature selection that only considers individual effects.

Published in:

IEEE/ACM Transactions on Computational Biology and Bioinformatics  (Volume:11 ,  Issue: 6 )