By Topic

Predicting Consistency-Maintenance Requirement of Code Clonesat Copy-and-Paste Time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xiaoyin Wang ; Key Laboratory of High Confidence Software Technologies, Peking University, Ministry of Education, and with the Department of Computer Science, University of Texas, San Antonio ; Yingnong Dang ; Lu Zhang ; Dongmei Zhang
more authors

Code clones have always been a double edged sword in software development. On one hand, it is a very convenient way to reuse existing code, and to save coding effort. On the other hand, since developers may need to ensure consistency among cloned code segments, code clones can lead to extra maintenance effort and even bugs. Recently studies on the evolution of code clones show that only some of the code clones experience consistent changes during their evolution history. Therefore, if we can accurately predict whether a code clone will experience consistent changes, we will be able to provide useful recommendations to developers onleveraging the convenience of some code cloning operations, while avoiding other code cloning operations to reduce future consistency maintenance effort. In this paper, we define a code cloning operation as consistency-maintenance-required if its generated code clones experience consistent changes in the software evolution history, and we propose a novel approach that automatically predicts whether a code cloning operation requires consistency maintenance at the time point of performing copy-and-paste operations. Our insight is that whether a code cloning operation requires consistency maintenance may relate to the characteristics of the code to be cloned and the characteristics of its context. Based on a number of attributes extracted from the cloned code and the context of the code cloning operation, we use Bayesian Networks, a machine-learning technique, to predict whether an intended code cloning operation requires consistency maintenance. We evaluated our approach on four subjects-two large-scale Microsoft software projects, and two popular open-source software projects-under two usage scenarios: 1) recommend developers to perform only the cloning operations predicted to be very likely to be consistency-maintenance-free, and 2) recommend developers to perform all cloning operations unless they are predicted very likely to be consiste- cy-maintenance-required. In the first scenario, our approach is able to recommend developers to perform more than 50 percent cloning operations with a precision of at least 94 percent in the four subjects. In the second scenario, our approach is able to avoid 37 to 72 percent consistency-maintenance-required code clones by warning developers on only 13 to 40 percent code clones, in the four subjects.

Published in:

IEEE Transactions on Software Engineering  (Volume:40 ,  Issue: 8 )