By Topic

Shifting-and-Scaling Correlation Based Biclustering Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ahmed, H.A. ; Department of Computer Science and Engineering, Tezpur University, Assam, India ; Mahanta, P. ; Bhattacharyya, D.K. ; Kalita, J.K.

The existence of various types of correlations among the expressions of a group of biologically significant genes poses challenges in developing effective methods of gene expression data analysis. The initial focus of computational biologists was to work with only absolute and shifting correlations. However, researchers have found that the ability to handle shifting-and-scaling correlation enables them to extract more biologically relevant and interesting patterns from gene microarray data. In this paper, we introduce an effective shifting-and-scaling correlation measure named Shifting and Scaling Similarity (SSSim), which can detect highly correlated gene pairs in any gene expression data. We also introduce a technique named Intensive Correlation Search (ICS) biclustering algorithm, which uses SSSim to extract biologically significant biclusters from a gene expression data set. The technique performs satisfactorily with a number of benchmarked gene expression data sets when evaluated in terms of functional categories in Gene Ontology database.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:11 ,  Issue: 6 )