By Topic

Improvements to X-ray laminography for automated inspection of solder joints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sankaran, V. ; SEMATECH, Austin, TX, USA ; Kalukin, A.R. ; Kraft, R.P.

With the increased usage of fine-pitch assemblies and ball grid array (BGA) packages, there is a dramatic increase in demand for automated defect detection techniques such as X-ray laminography. However, the limitations of this imaging medium are not well understood by the industry. This article addresses the need for improving the imaging resolution of X-ray laminography, particularly for accurate three-dimensional (3-D) measurement of solder joint structures. The authors have developed a new method for reconstruction of the laminographs which improves the signal-to-noise ratio (SNR) of the laminographs significantly and enables better 3-D visualization of solder shape. Application of automated solder joint defect classification using neural networks has also been studied. Components with BGA, gull-wing and J-lead joints were imaged and several neural network methods were used to identify different classes of defects particularly significant to each type of joint. A novel probabilistic neural network approach for two-dimensional (2-D) image classification has been developed which performs as well as or better than a conventional backpropagation network

Published in:

Components, Packaging, and Manufacturing Technology, Part C, IEEE Transactions on  (Volume:21 ,  Issue: 2 )