By Topic

Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kuhmann, J.F. ; Mikroeletron. Centre, Univ. of Denmark, Lyngby, Denmark ; Preuss, A. ; Adolphi, B. ; Maly, K.
more authors

For microelectronics and especially for upcoming new packaging technologies in micromechanics and photonics fluxless, reliable and economic soldering technologies are needed. In this article, we consequently focus on the oxidation and reduction kinetics of three commonly used eutectic solder alloys: (1) SnPb; (2) InSn; (3) AuSn. The studies of the oxidation kinetics show that the growth of the native oxide, which covers the solder surfaces from the start of all soldering operations is self-limiting. The rate of oxidation on the molten, metallic solder surfaces is significantly reduced with decreasing O2 partial-pressure. Using in situ Auger electron spectroscopy (AES) it could be shown for the first time, that H2 can reduce Sn-oxide as well as In-oxide at moderate heating duration and temperatures. In the second part of this study, the results, obtained by the investigation of oxidation and reduction kinetics, are applied to flip-chip (FC) bonding experiments in vacuum with and without the injection of H2. Wetting in vacuum is excellent but the self-alignment during flip-chip soldering is restricted. The desired, perfectly self-aligned FC-bonds have been only achieved, using evaporated and reflowed AuSn(80/20) and SnPb(60/40) after the introduction of H2

Published in:

Components, Packaging, and Manufacturing Technology, Part C, IEEE Transactions on  (Volume:21 ,  Issue: 2 )