By Topic

A modified concatenated coding scheme, with applications to magnetic data storage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. L. Fan ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; A. R. Calderbank

When a block modulation code is concatenated with an error-correction code (ECC) in the standard way, the use of a modulation code with long block lengths results in error propagation. This article analyzes the performance of modified concatenation, which involves reversing the order of modulation and the ECC. This modified scheme reduces the error propagation, provides greater flexibility in the choice of parameters, and facilitates soft-decision decoding, with little or no loss in transmission rate. In particular, examples are presented which show how this technique can allow fewer interleaves per sector in hard disk drives, and permit the use of more sophisticated block modulation codes which are better suited to the channel

Published in:

IEEE Transactions on Information Theory  (Volume:44 ,  Issue: 4 )