By Topic

Millimeter-wave-band amplifier and mixer MMICs using a broad-band 45° power divider/combiner

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hayashi, H. ; NTT Wireless Syst. Labs., Kanagawa, Japan ; Okazaki, H. ; Kanda, A. ; Hirota, T.
more authors

This paper demonstrates millimeter-wave-band amplifier and mixer monolithic microwave integrated circuits (MMIC's) using a broad-band 45° power divider/combiner. At first, we propose a broad-band 45° power divider/combiner, which combines a Wilkinson divider/combiner, 45° delay line, and 90° short stub. A coupling loss of 4.0±0.2 dB and a return loss and an isolation of more than 19 dB with 45±1° phase difference was obtained from 17 to 22 GHz for the fabricated K-band MMIC 45° power divider/combiner. Next, a parallel amplifier using the broad-band 45° power divider/combiner, which can be used in a power-combining circuit configuration requiring no isolator, is shown. Comparing the transmitter intermodulation generated in the parallel amplifier using the broad-band 45° power divider/combiner and that generated in the one using the conventional type, the broad-band suppression effect was confirmed. Finally, an application of the broad-band 45° power divider/combiner to a single-sideband (SSB) subharmonically pumped (SHP) mixer requiring no IF switch is shown. In an RF frequency range from 22.89 to 26.39 GHz, the fabricated K-band MMIC mixer achieved (for up-conversion) the good results of more than -13-dB conversion gain and more than 24-dB image-rejection ratio. These contribute significantly to the miniaturization of millimeter-wave communication equipment

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:46 ,  Issue: 6 )