By Topic

Si-micromachined coplanar waveguides for use in high-frequency circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Herrick, K.J. ; Michigan Univ., Ann Arbor, MI, USA ; Schwarz, Thomas A. ; Katehi, L.P.B.

This paper describes the development and characterization of a new class of Si-micromachined lines and circuit components for operation between 2-110 GHz. In these lines, which are a finite-ground coplanar-waveguide (FGC) type, Si micromachining is used to remove the dielectric material from the aperture regions in an effort to reduce dispersion and minimize propagation loss. Measured results have shown a considerable loss reduction to levels that compare favorably with those of membrane lines and rectangular waveguides. Micromachined FGC lines have been used to develop V- and W-band bandpass filters. The W-band micromachined FGC filter has shown a 0.8-dB improvement in insertion loss at 94 GHz over a conventional FGC line. This approach offers an excellent alternative to the membrane technology, exhibiting very low loss, no dispersion, and mode-free operation without using membranes to support the interconnect structure

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:46 ,  Issue: 6 )