By Topic

Switching curve controller for FES-assisted standing up and sitting down

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. J. Dolan ; Dept. of Orthopaedic & Trauma Surg., Dundee Univ., UK ; B. J. Andrews ; P. Veltink

A low-level, closed-loop controller for FES-assisted standing up and sitting down is described. If, for able-bodied individuals, when standing up and sitting down, the knee angular velocity is plotted against knee angle, consistent phase-plane trajectories are produced. The bang-bang controller uses a model of this trajectory as a switching curve. The design rationale for the controller was the desire to avoid injuries that might occur if knee-locking on standing up and seat-contact on sitting down are not adequately controlled. This switching curve controller (SCC) was incorporated within a hierarchical, finite state control scheme, with electrical stimulation applied bilaterally to the knee extensors. The SCC was tested in a pilot study on a female volunteer with paraplegia (T5/6 ASIA A) and evaluated against an unramped, open-loop controller (OLC). The vertical hand forces and knee angles were measured. The subject was able to achieve standing up and sitting down safely using both controllers. For standing up, the SCC was not found to offer any quantifiable advantages over the OLC and was found to increase the hand force by 8.4%. In contrast, for sitting down the SCC was found to reduce the knee angular velocities as the subject approached the seat by 27%, demonstrating a safer, softer landing

Published in:

IEEE Transactions on Rehabilitation Engineering  (Volume:6 ,  Issue: 2 )