By Topic

A New Formula for Bivariate Hermite Interpolation on Variable Step Grids and Its Application to Image Interpolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Delibasis, K.K. ; Dept. of Comput. Sci. & Biomed. Inf., Univ. of Thessaly, Lamia, Greece ; Kechriniotis, A.

In this paper, we present a novel formula of the bivariate Hermite interpolating (BHI) polynomial in the case of support points arranged on a grid with variable step. This expression is applicable when interpolation of a bivariate function is required, given its value and the values of its partial derivatives of arbitrarily high order, at the support points. The proposed formula is a generalization of an existing formula for the bivariate Hermite polynomial. It is also algebraically much simpler, thus can be computed more efficiently. In order to apply Hermite interpolation to image interpolation, we simplify the proposed (BHI) to handle support points on a regular unit-step grid. The values of image partial derivatives are arithmetically approximated using compact finite differences. The proposed method is being assessed in a number of image interpolation experiments that include a synthetic image, for which the values of the partial derivatives are computed analytically, as well as a collection of images from different medical modalities. The proposed BHI with up to second-order image partial derivatives, outperforms the convolution-based interpolation methods, as well as generalized interpolation methods with the same number of support points that was compared with, in the majority of image interpolation experiments. The computational load of the proposed BHI is calculated and its behaviour with respect to its controlling parameters is investigated.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 7 )