By Topic

Phase-Based Binarization of Ancient Document Images: Model and Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nafchi, H.Z. ; Synchromedia Lab. for Multimedia Commun. in Telepresence, Ecole de Technol. Super., Montreal, QC, Canada ; Moghaddam, R.F. ; Cheriet, M.

In this paper, a phase-based binarization model for ancient document images is proposed, as well as a postprocessing method that can improve any binarization method and a ground truth generation tool. Three feature maps derived from the phase information of an input document image constitute the core of this binarization model. These features are the maximum moment of phase congruency covariance, a locally weighted mean phase angle, and a phase preserved denoised image. The proposed model consists of three standard steps: 1) preprocessing; 2) main binarization; and 3) postprocessing. In the preprocessing and main binarization steps, the features used are mainly phase derived, while in the postprocessing step, specialized adaptive Gaussian and median filters are considered. One of the outputs of the binarization step, which shows high recall performance, is used in a proposed postprocessing method to improve the performance of other binarization methodologies. Finally, we develop a ground truth generation tool, called PhaseGT, to simplify and speed up the ground truth generation process for ancient document images. The comprehensive experimental results on the DIBCO'09, H-DIBCO'10, DIBCO'11, H-DIBCO'12, DIBCO'13, PHIBD'12, and BICKLEY DIARY data sets show the robustness of the proposed binarization method on various types of degradation and document images.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 7 )