By Topic

Object recognition and localization using optical proximity sensor system: polyhedral case

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sukhan Lee ; Univ. of Southern California, Los Angeles, CA, USA ; Hahn, H.S.

The authors present an algorithm for the recognition and localization of 3D polyhedral objects based on an optical proximity sensor system. In particular, the representation of a polyhedral object and the determination of the optimal sensor trajectory for the next probing are considered. The object representation is based on two levels of hierarchy: the description of a 3D structure by an intersurface relation description table (SDT) and the surface normal vector (SNV) distribution graph, and the description of individual surfaces by interedge relation description tables (EDTs). The partially filled SDT and EDTs of the test object are matched against the SDT and EDTs of a model object to extract all the possible interpretations. In order to achieve the maximum discrimination among all possible interpretations, the optimal sensor trajectory for the next probing is determined as follows: (1) select the optimal beam orientation on the basis of the SNV distribution graph of the multiple interpretation image (MII), where the MII is formed with reference to the hand frame by localizing the test object on the basis of individual interpretations, and (2) determine the optimal probing plane by projecting the MII onto the projection plane perpendicular to the beam orientation and deriving the optimal path on the probing plane. Simulation results are shown

Published in:

Interpretation of 3D Scenes, 1989. Proceedings., Workshop on

Date of Conference:

27-29 Nov 1989