By Topic

Comparison of Silica and Sapphire Fiber SERS Probes Fabricated by a Femtosecond Laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lei Yuan ; Sch. of Mech. Eng., Beijing Inst. of Technol., Beijing, China ; Xinwei Lan ; Jie Huang ; Hanzheng Wang
more authors

Different types of fibers were compared for construction of reflection-based surface-enhanced Raman-scattering (SERS) fiber probes. The probes were made by direct femtosecond (fs) laser micromachining of nanometer structures on the fiber endface and subsequent chemical plating of a thin layer of silver. Rhodamine 6G solutions were used to evaluate the performance of the SERS probes. In comparison with the silica fibers, the single-crystal sapphire fiber has much lower background Raman scattering. The fs laser is found effective to fabricate high-quality sapphire fiber SERS probes for detection of weak Raman signals in a reflection configuration.

Published in:

Photonics Technology Letters, IEEE  (Volume:26 ,  Issue: 13 )