By Topic

Integrating dependent sensory data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. C. S. Chung ; Dept. of Comput. Sci., Hong Kong Univ. of Sci. & Technol., Kowloon, Hong Kong ; H. C. Shen

In sensory data fusion and integration consideration, sensor independence is a common assumption. We demonstrate the impact of including dependent information in the sensory data combination process. The team consensus approach based on information entropy can improve the measurement accuracy remarkably. The major benefits of the approach are: (a) the simple linear combination of the weighted initial local estimates for each sensor; and (b) the low order bivariate likelihood functions which can be represented easily. A comparison of the team consensus approach with the Bayesian approach is presented

Published in:

Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on  (Volume:4 )

Date of Conference:

16-20 May 1998