Cart (Loading....) | Create Account
Close category search window
 

Advanced metering infrastructure performance using European low-voltage power line communication networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matanza, J. ; Autom. & Electr. Dept., ICAI Sch. of Eng., Madrid, Spain ; Alexandres, S. ; Rodríguez-Morcillo, C.

Power line communication has recently attracted the attention of energy companies as a useful and natural technology for building the advanced metering infrastructure. In this context, device language message specification/companion specification for energy metering (DLMS/COSEM) is an increasingly popular standardised application protocol for communication between utilities and their customers. This study analyses the communication performance that can be expected when using the power line communication technology, powerline intelligent metering evolution (PRIME), to send DLMS/COSEM messages. Physical phenomena - such as background and impulsive noise sources, channel attenuation and multi-path effect - are taken into account during the first step in the evaluation of this technology's communication performance in the physical layer. This metric is then used in upper layers to compute the packet error rate. An analysis is carried out at the application layer in terms of expected latency in different communication environments. Several simulations are performed in a European low-voltage topology to compute the number of metres that can be read within 15 min. These simulations were carried out using MATLAB and OMNeT++ software.

Published in:

Communications, IET  (Volume:8 ,  Issue: 7 )

Date of Publication:

May 6 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.