By Topic

Unfold High-Dimensional Clouds for Exhaustive Gating of Flow Cytometry Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Peng Qiu ; Dept. of Biomed. Eng., Georgia Inst. of Technol. & Emory Univ., Atlanta, GA, USA

Flow cytometry is able to measure the expressions of multiple proteins simultaneously at the single-cell level. A flow cytometry experiment on one biological sample provides measurements of several protein markers on or inside a large number of individual cells in that sample. Analysis of such data often aims to identify subpopulations of cells with distinct phenotypes. Currently, the most widely used analytical approach in the flow cytometry community is manual gating on a sequence of nested biaxial plots, which is highly subjective, labor intensive, and not exhaustive. To address those issues, a number of methods have been developed to automate the gating analysis by clustering algorithms. However, completely removing the subjectivity can be quite challenging. This paper describes an alternative approach. Instead of automating the analysis, we develop novel visualizations to facilitate manual gating. The proposed method views single-cell data of one biological sample as a high-dimensional point cloud of cells, derives the skeleton of the cloud, and unfolds the skeleton to generate 2D visualizations. We demonstrate the utility of the proposed visualization using real data, and provide quantitative comparison to visualizations generated from principal component analysis and multidimensional scaling.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:11 ,  Issue: 6 )