By Topic

acc-Motif: Accelerated Network Motif Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Meira, L.A.A. ; Sch. of Technol., Univ. of Campinas (UNICAMP), Campinas, Brazil ; Maximo, V.R. ; Fazenda, A.L. ; da Conceicao, A.F.

Network motif algorithms have been a topic of research mainly after the 2002-seminal paper from Milo et al. [1], which provided motifs as a way to uncover the basic building blocks of most networks. Motifs have been mainly applied in Bioinformatics, regarding gene regulation networks. Motif detection is based on induced subgraph counting. This paper proposes an algorithm to count subgraphs of size k + 2 based on the set of induced subgraphs of size k. The general technique was applied to detect 3, 4 and 5-sized motifs in directed graphs. Such algorithms have time complexity O(a(G)m), O(m2) and O(nm2), respectively, where a(G) is the arboricity of G(V, E). The computational experiments in public data sets show that the proposed technique was one order of magnitude faster than Kavosh and FANMOD. When compared to NetMODE, acc-Motif had a slightly improved performance.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:11 ,  Issue: 5 )