By Topic

Re-estimation of Motion and Reconstruction for Distributed Video Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huynh Van Luong ; Dept. of Photonics Eng., Tech. Univ. of Denmark, Lyngby, Denmark ; Lars Lau Rakêt ; Søren Forchhammer

Transform domain Wyner-Ziv (TDWZ) video coding is an efficient approach to distributed video coding (DVC), which provides low complexity encoding by exploiting the source statistics at the decoder side. The DVC coding efficiency depends mainly on side information and noise modeling. This paper proposes a motion re-estimation technique based on optical flow to improve side information and noise residual frames by taking partially decoded information into account. To improve noise modeling, a noise residual motion re-estimation technique is proposed. Residual motion compensation with motion updating is used to estimate a current residue based on previously decoded frames and correlation between estimated side information frames. In addition, a generalized reconstruction algorithm to optimize a multihypothesis reconstruction is proposed. The proposed techniques using motion and reconstruction re-estimation (MORE) are integrated in the SING TDWZ codec, which uses side information and noise learning. For Wyner-Ziv frames using GOP size 2, the MORE codec significantly improves the TDWZ coding efficiency with an average (Bjøntegaard) PSNR improvement of 2.5 dB and up to 6 dB improvement compared with DISCOVER.

Published in:

IEEE Transactions on Image Processing  (Volume:23 ,  Issue: 7 )