By Topic

On the Delay-Storage Trade-Off in Content Download from Coded Distributed Storage Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Joshi, G. ; Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Yanpei Liu ; Soljanin, E.

We study how coding in distributed storage reduces expected download time, in addition to providing reliability against disk failures. The expected download time is reduced because when a content file is encoded with redundancy and distributed across multiple disks, reading only a subset of the disks is sufficient for content reconstruction. For the same total storage used, coding exploits the diversity in storage better than simple replication, and hence gives faster download. We use a novel fork-join queueing framework to model multiple users requesting the content simultaneously, and derive bounds on the expected download time. Our system model and results are a novel generalization of the fork-join system that is studied in queueing theory literature. Our results demonstrate the fundamental trade-off between the expected download time and the amount of storage space. This trade-off can be used for design of the amount of redundancy required to meet the delay constraints on content delivery.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:32 ,  Issue: 5 )