By Topic

Analyzing and eliminating the causes of fault sensitivity analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghalaty, N.F. ; Bradley Dept. of Electr. & Comput. Eng., Virginia Tech, Blacksburg, VA, USA ; Aysu, A. ; Schaumont, P.

Fault Sensitivity Analysis (FSA) is a new type of side-channel attack that exploits the relation between the sensitive data and the faulty behavior of a circuit, the so-called fault sensitivity. This paper analyzes the behavior of different implementations of AES S-box architectures against FSA, and proposes a systematic countermeasure against this attack. This paper has two contributions. First, we study the behavior and structure of several S-box implementations, to understand the causes behind the fault sensitivity. We identify two factors: the timing of fault sensitive paths, and the number of logic levels of fault sensitive gates within the netlist. Next, we propose a systematic countermeasure against FSA. The countermeasure masks the effect of these factors by intelligent insertion of delay elements. We evaluate our methodology by means of an FPGA prototype with built-in timing-measurement. We show that FSA can be thwarted at low hardware overhead. Compared to earlier work, our method operates at the logic-level, is systematic, and can be easily generalized to bigger circuits.

Published in:

Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014

Date of Conference:

24-28 March 2014