By Topic

The Virtual Mitten: A novel interaction paradigm for visuo-haptic manipulation of objects using grip force

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Achibet, M. ; Inria Rennes, Rennes, France ; Marchal, M. ; Argelaguet, F. ; Lecuyer, A.

In this paper, we propose a novel visuo-haptic interaction paradigm called the “Virtual Mitten” for simulating the 3D manipulation of objects. Our approach introduces an elastic handheld device that provides a passive haptic feedback through the fingers and a mitten interaction metaphor that enables to grasp and manipulate objects. The grasping performed by the mitten is directly correlated with the grip force applied on the elastic device and a supplementary pseudo-haptic feedback modulates the visual feedback of the interaction in order to simulate different haptic perceptions. The Virtual Mitten allows natural interaction and grants users with an extended freedom of movement compared with rigid devices with limited workspaces. Our approach has been evaluated within two experiments focusing both on subjective appreciation and perception. Our results show that participants were able to well perceive different levels of effort during basic manipulation tasks thanks to our pseudo-haptic approach. They could also rapidly appreciate how to achieve different actions with the Virtual Mitten such as opening a drawer or pulling a lever. Taken together, our results suggest that our novel interaction paradigm could be used in a wide range of applications involving one or two-hand haptic manipulation such as virtual prototyping, virtual training or video games.

Published in:

3D User Interfaces (3DUI), 2014 IEEE Symposium on

Date of Conference:

29-30 March 2014