By Topic

Constrained-storage vector quantization with a universal codebook

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Ramakrishnan ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; K. Rose ; A. Gersho

Many image compression techniques require the quantization of multiple vector sources with significantly different distributions. With vector quantization (VQ), these sources are optimally quantized using separate codebooks, which may collectively require an enormous memory space. Since storage is limited in most applications, a convenient way to gracefully trade between performance and storage is needed. Earlier work addressed this problem by clustering the multiple sources into a small number of source groups, where each group shares a codebook. We propose a new solution based on a size-limited universal codebook that can be viewed as the union of overlapping source codebooks. This framework allows each source codebook to consist of any desired subset of the universal code vectors and provides greater design flexibility which improves the storage-constrained performance. A key feature of this approach is that no two sources need be encoded at the same rate. An additional advantage of the proposed method is its close relation to universal, adaptive, finite-state and classified quantization. Necessary conditions for optimality of the universal codebook and the extracted source codebooks are derived. An iterative design algorithm is introduced to obtain a solution satisfying these conditions. Possible applications of the proposed technique are enumerated, and its effectiveness is illustrated for coding of images using finite-state vector quantization, multistage vector quantization, and tree-structured vector quantization

Published in:

IEEE Transactions on Image Processing  (Volume:7 ,  Issue: 6 )