By Topic

Lossless and near-lossless compression of EEG signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cinkler, J. ; Dept. of Electr. Eng., Northern Illinois Univ., DeKalb, IL, USA ; Kong, X. ; Memon, N.

In this paper we study compression techniques for electroencephalograph (EEG) signals. A variety of lossless compression techniques, ranging from simple dictionary based approaches to more sophisticated context modeling techniques based on work in lossless image coding are investigated and compared. It is seen that compression ratios obtained by lossless compression are limited. Though lossy compression can yield significantly higher compression ratios while potentially preserving diagnostic accuracy, is is not usually employed due to legal concerns. Hence, we investigate near-lossless compression techniques that give quantitative bounds on the errors introduced during compression. It is observed that such techniques give significantly higher compression ratios. Simulation results with a large variety of data sets are reported.

Published in:

Signals, Systems & Computers, 1997. Conference Record of the Thirty-First Asilomar Conference on  (Volume:2 )

Date of Conference:

2-5 Nov. 1997