Cart (Loading....) | Create Account
Close category search window

Modeling of energy transport in arcing electrical contacts to determine mass loss

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Swingler, J. ; Dept. of Electr. Eng., Southampton Univ., UK ; McBride, J.W.

This paper presents a model which calculates the amount of erosion of an electrical contact undergoing arcing for a range of contact opening conditions. The model assumes all vaporized material is lost from the contact and that the material lost is related to the energy received by the contact. It is proposed that two processes occur which transport energy to the contact surface from the arc discharge. These have been called the radial transport process and the channeled transport process. Calculations at different ratios of the transport processes are compared to experimental data at 9 A, 64 V DC, The modeling procedure consists of several stages: 1) the arc discharge is divided into three regions which generates energy for dissipation; 2) the energy from each region is dissipated through the arc and delivered to the contact surface by radial/channeling transport processes; 3) heat flow through the contact from the surface is calculated using an explicit numerical finite difference scheme dependant upon energy input, contact dimensions, and material properties. This is then used to determine the temperature gradient of the surface and any phase changes; 4) knowing the condition of the contact surface, and contact separation, the mass loss is calculated assuming all evaporated material is removed from the surface

Published in:

Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Mar 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.