Cart (Loading....) | Create Account
Close category search window
 

A test to determine the multivariate normality of a data set

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Smith, S.P. ; Northrop Res. & Technol. Center, Palos Verdes Peninsula, CA, USA ; Jain, A.K.

A test is described for multivariate normality that is useful in pattern recognition. The test is based on the Friedman-Rafsky (1979) multivariate extension of the Wald-Wolfowitz runs test. The test data are combined with a multivariate swarm of points following the normal distribution generated with mean vector and covariance matrix estimated from the test data. The minimal spanning tree of this resultant ensemble of points is computed and the count of the interpopulation edges in the minimal spanning tree is used as a test statistic. The simulation studied both the null case of the test and one simple deviation from normality. Two conclusions are made from this study. First, the test can be conservatively applied by using the asymptotic normality of the test statistic, even for small sample sizes. Second, the power of the test appears reasonable, especially in high dimensions. Monte Carlo experiments were performed to determine if the test is reliable in high dimensions with moderate sample size. The method is compared to other such tests available in the literature.<>

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:10 ,  Issue: 5 )

Date of Publication:

Sept. 1988

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.