By Topic

A rated-clock test method for path delay faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bose, S. ; Bell Labs., Lucent Technol., Murray Hill, NJ, USA ; Agrawal, P. ; Agrawal, V.D.

Current test generation algorithms for path delay faults assume a variable-clock methodology for test application. Two-vector test sequences assume that the combinational logic reaches a steady state following the first vector before the second vector is applied. While such tests may be acceptable for combinational circuits, their use for nonscan sequential circuit testing is impractical. A rated-clock path delay simulator shows a large drop in coverage for vectors obtained from existing test generators that assume a variable clock. A new test generation algorithm provides valid tests for uniform rated-clock test application. In this algorithm, signals are represented for three-vector sequences. The test generation procedure activates a target path from input to output using the three-vector algebra. For an effective backward justification, we derive an optimal 41-valued algebra. This is the first time, rated-clock tests for large circuits are obtained. Results for ISCAS-89 benchmarks show that rated-clock tests cover some longest, or close to longest, paths.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:6 ,  Issue: 2 )