By Topic

Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Y. S. Liu ; Gen. Electr. Corp. Res. & Dev. Center, Schenectady, NY, USA ; R. J. Wojnarowski ; W. A. Hennessy ; P. A. Piacente
more authors

The technical approach and progress achieved under the Polymer Optical Interconnect Technology (POINT) program are described in this paper. The POINT program is a collaborative effort among GE, Honeywell, AMP, AlliedSignal, Columbia University, and University of California at San Diego (UCSD), sponsored by DARPA/ETO, to develop affordable optoelectronic packaging and interconnect technologies for board and backplane applications. Specifically, progress is reported on (a) development of batch-operated plastic VCSEL array packaging technology using planar fabrication, (b) demonstration of high-density optical interconnects for board and backplane applications using polymer waveguides to a length of 50 cm at an I/O density of 250 channels per inch, (c) development of low-loss optical polymer waveguides with loss less than 0.1 dB/cm at 850 nm, and (d) development of passive alignment processes for efficient coupling between a VCSEL array and polymer waveguides. Significant progress has also been made under the POINT program at Columbia University, in applying CAD tools to simulate multimode-guided wave systems and, at UCSD, to assist mechanical and thermal design in optoelectronic packaging

Published in:

Electronic Components & Technology Conference, 1998. 48th IEEE

Date of Conference:

25-28 May 1998