By Topic

Solid state UV-laser technology for the manufacture of high performance organic modules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. B. Noddin ; W.L. Gore & Associates, Eau Claire, WI, USA ; E. Swenson ; Yunlong Sun

Advances in solid state laser technology have enabled tremendous performance increases in chip packaging technology. Organic composites are now available for high I/O flip chip modules due in part to the size, speed and flexibility of laser via creation methodologies. Generation of the third and fourth harmonics of the fundamental infrared Nd-YAG wavelength enable precision micromachining of alternating layers of organic insulators and metal conductors. The range of available pulse energies at high repetition rate, low M2 values and superb pulse stability allows the formation of both high aspect ratio through vias and very small blind vias utilizing similar tools. The ability to fabricate chip packages with through vias, staggered blind vias, or any combination of blind, buried and through vias affords system and chip level design teams the maximum allowable flexibility to optimize performance versus cost. The most fundamental hardware improvements revolve around the conversion efficiency and power stability of Q-switched, lamp pumped Nd-YAG lasers utilizing BBO crystals for harmonic generation. The high pulse energies coupled with excellent beam quality translates into near theoretical focal depth values that in turn allow <50 micron, >7:1 aspect ratio interconnects to be manufactured at defect densities less than 50 ppm. Other advances including improved coatings on crystals and optics and improved thermal management at the rail, result in overall system availability exceeding 85% and via location accuracy of better than +/-20 microns. Future advances are likely to include a migration from lamp pumping to diode pumping, optimization of frequency conversion and laser design for greater power at high repetition rates, multi-rail systems and improved automation. A roadmap for past, current and future laser characteristics as they relate to via qualities and their relative costs will be discussed

Published in:

Electronic Components &amp; Technology Conference, 1998. 48th IEEE

Date of Conference:

25-28 May 1998