By Topic

A Comparison of Two Excitation Modes for MEMS Electrothermal Displacement Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mohammadi, A. ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Newcastle, NSW, Australia ; Moheimani, S.O.R. ; Yuce, M.R.

MEMS electrothermal displacement sensors can be operated in constant current (CC) or constant voltage (CV) excitation modes. The CV mode is more commonly used. However, there have been reports that the CC excitation mode may lead to a larger measured signal, and thus, it may be a better choice than the CV mode. In this letter, we present an analytic comparison of the two methods, and show that from a signal-to-noise-ratio point of view, benefits of operating a sensor in CC mode are only marginal. The analytical investigation is supported by experiments performed on sensors integrated in a SOI-MEMS nanopositioner with low noise read out circuits, which leads to 0.04-nm/√Hz displacement resolution for both excitation modes.

Published in:

Electron Device Letters, IEEE  (Volume:35 ,  Issue: 5 )