Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Power Control and Management in a Hybrid AC/DC Microgrid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eghtedarpour, N. ; Shiraz Univ., Shiraz, Iran ; Farjah, E.

Hybrid AC/DC microgrids have been planned for the better interconnection of different distributed generation systems (DG) to the power grid, and exploiting the prominent features of both ac and dc microgrids. Connecting these microgrids requires an interlinking AC/DC converter (IC) with a proper power management and control strategy. During the islanding operation of the hybrid AC/DC microgrid, the IC is intended to take the role of supplier to one microgrid and at the same time acts as a load to the other microgrid and the power management system should be able to share the power demand between the existing AC and dc sources in both microgrids. This paper considers the power flow control and management issues amongst multiple sources dispersed throughout both ac and dc microgrids. The paper proposes a decentralized power sharing method in order to eliminate the need for any communication between DGs or microgrids. This hybrid microgrid architecture allows different ac or dc loads and sources to be flexibly located in order to decrease the required power conversions stages and hence the system cost and efficiency. The performance of the proposed power control strategy is validated for different operating conditions, using simulation studies in the PSCAD/EMTDC software environment.

Published in:

Smart Grid, IEEE Transactions on  (Volume:5 ,  Issue: 3 )