By Topic

Influence of smoothing window length on electromyogram amplitude estimates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
St-Amant, Y. ; Dept. of Mech. Eng., Laval Univ., Que., Canada ; Rancourt, D. ; Clancy, E.A.

A systematic, experimental study of the influence of smoothing window length on the signal-to-noise ratio (SNR) of electromyogram (EMG) amplitude estimates is described. Surface EMG waveforms were sampled during nonfatiguing, constant-force, constant-angle contractions of the biceps or triceps muscles, over the range of 10%-75% maximum voluntary contraction. EMG amplitude estimates were computed with eight different EMG processor schemes using smoothing length durations spanning 2.45-500 ms. An SNR was computed from each amplitude estimate (deviations about the mean value of the estimate were considered as noise). Over these window lengths, average ± standard deviation SNR's ranged from 1.4±0.28 to 16.2±5.4 for unwhitened single-channel EMG processing and from 3.2±0.7 to 37.3±14.2 for whitened, multiple-channel EMG processing (results pooled across contraction level). It was found that SNR increased with window length in a square root fashion. The shape of this relationship was consistent with classic theoretical predictions, however none of the processors achieved the absolute performance level predicted by the theory. These results are useful in selecting the length of the smoothing window in traditional surface EMG studies. In addition, this study should contribute to the development of EMG processors which dynamically tune the smoothing window length when the EMG amplitude is time varying.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:45 ,  Issue: 6 )