By Topic

Scaling Semantic Graph Databases in Size and Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Alessandro Morari ; Pacific Northwest Nat. Lab., Richland, WA, USA ; Vito Giovanni Castellana ; Oreste Villa ; Antonino Tumeo
more authors

GEMS is a full software system that implements a large-scale, semantic graph database on commodity clusters. Its framework comprises a SPARQL-to-C++ compiler, a library of distributed data structures, and a custom multithreaded runtime library. The authors evaluated their software stack on the Berlin SPARQL benchmark with datasets of up to 10 billion graph edges, demonstrating scaling in dataset size and performance as they added cluster nodes.

Published in:

IEEE Micro  (Volume:34 ,  Issue: 4 )