By Topic

A low thermal budget self-aligned Ti silicide technology using germanium implantation for thin-film SOI MOSFET's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ping Liu ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Hsiao, T.C. ; Woo, J.C.S.

In this paper, a titanium salicide technology with a very low thermal annealing temperature using germanium implantation for thin film SOI MOSFET's is investigated in detail. Ti silicide formation on the amorphous silicon generated by germanium implantation is studied. Compared to the conventional Ti salicide process, the Ti silicidation temperature is significantly lowered and the silicide depth is well controlled through the pre-amorphized layer. Therefore, the potential problems of the salicide process for SOI MOSFET's such as lateral voids, dopant segregation, thermal agglomeration, and increase of resistance on narrow gate are suppressed by germanium implantation. With the Ge pre-amorphization salicide process, a very low silicide contact resistance is obtained and sub-0.25-μm SOI MOSFET's are fabricated with good device characteristics

Published in:

Electron Devices, IEEE Transactions on  (Volume:45 ,  Issue: 6 )