By Topic

Design of high-order Chebyshev FIR filters in the complex domain under magnitude constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Vuerinckx, R. ; Dept. of ELEC, Vrije Univ., Brussels

This article discusses the design of FIR filters that approximate a complex-valued target frequency response in a Chebyshev sense. Additionally, the required stopband attenuation can be specified. Solving the dual of a semi-infinite linear program is currently the most efficient way to design such filters, but numerical problems prevent the design of high-order FIR filters. Modifications are proposed to overcome this limitation. Furthermore, an efficient method is presented for generating starting values that are close to the optimal solution such that the number of iterations is considerably reduced. Examples of filters with a length up to 250 taps are included

Published in:

Signal Processing, IEEE Transactions on  (Volume:46 ,  Issue: 6 )