By Topic

Conservation of Information: Software’sHidden Clockwork?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hatton, L. ; Fac. of Sci., Eng. & Comput., Kingston Univ., Kingston upon Thames, UK

In this paper it is proposed that the Conservation of Hartley-Shannon Information (hereafter contracted to H-S Information) plays the same role in discrete systems as the Conservation of Energy does in physical systems. In particular, using a variational approach, it is shown that the symmetry of scale-invariance, power-laws and the Conservation of H-S Information are intimately related and lead to the prediction that the component sizes of any software system assembled from components made from discrete tokens always asymptote to a scale-free power-law distribution in the unique alphabet of tokens used to construct each component. This is then validated to a very high degree of significance on some 100 million lines of software in seven different programming languages independently of how the software was produced, what it does, who produced it or what stage of maturity it has reached. A further implication of the theory presented here is that the average size of components depends only on their unique alphabet, independently of the package they appear in. This too is demonstrated on the main data set and also on 24 additional Fortran 90 packages.

Published in:

Software Engineering, IEEE Transactions on  (Volume:40 ,  Issue: 5 )