By Topic

Joint Matrices Decompositions and Blind Source Separation: A survey of methods, identification, and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Matrix decompositions such as the eigenvalue decomposition (EVD) or the singular value decomposition (SVD) have a long history in signal processing. They have been used in spectral analysis, signal/noise subspace estimation, principal component analysis (PCA), dimensionality reduction, and whitening in independent component analysis (ICA). Very often, the matrix under consideration is the covariance matrix of some observation signals. However, many other kinds of matrices can be encountered in signal processing problems, such as time-lagged covariance matrices, quadratic spatial time-frequency matrices [21], and matrices of higher-order statistics.

Published in:

IEEE Signal Processing Magazine  (Volume:31 ,  Issue: 3 )