Cart (Loading....) | Create Account
Close category search window
 

Sparse Representation for Brain Signal Processing: A tutorial on methods and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yuanqing Li ; Sch. of Autom. Sci. & Eng., Southchina Univ. of Technol., Guangzhou, China ; Zhu Liang Yu ; Ning Bi ; Yong Xu
more authors

In many cases, observed brain signals can be assumed as the linear mixtures of unknown brain sources/components. It is the task of blind source separation (BSS) to find the sources. However, the number of brain sources is generally larger than the number of mixtures, which leads to an underdetermined model with infinite solutions. Under the reasonable assumption that brain sources are sparse within a domain, e.g., in the spatial, time, or time-frequency domain, we may obtain the sources through sparse representation. As explained in this article, several other typical problems, e.g., feature selection in brain signal processing, can also be formulated as the underdetermined linear model and solved by sparse representation. This article first reviews the probabilistic results of the equivalence between two important sparse solutions - the 0-norm and 1-norm solutions. In sparse representation-based brain component analysis including blind separation of brain sources and electroencephalogram (EEG) inverse imaging, the equivalence is related to the recoverability of the sources. This article also focuses on the applications of sparse representation in brain signal processing, including components extraction, BSS and EEG inverse imaging, feature selection, and classification. Based on functional magnetic resonance imaging (fMRI) and EEG data, the corresponding methods and experimental results are reviewed.

Published in:

Signal Processing Magazine, IEEE  (Volume:31 ,  Issue: 3 )

Date of Publication:

May 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.