Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

On the Hardness of Adding Nonmasking Fault Tolerance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Klinkhamer, A. ; Department of Computer Science, Michigan Technological University, Houghton, MI 49931 ; Ebnenasir, A.

This paper investigates the complexity of adding nonmasking fault tolerance, where a nonmasking fault-tolerant program guarantees recovery from states reached due to the occurrence of faults to states from where its specifications are satisfied. We first demonstrate that adding nonmasking fault tolerance to low atomicity programs—where processes have read/write restrictions with respect to the variables of other processes—is NP-complete (in the size of the state space) on an unfair or weakly fair scheduler. Then, we establish a surprising result that even under strong fairness, addition of nonmasking fault tolerance remains NP-hard! The NP-hardness of adding nonmasking fault tolerance is based on a polynomial-time reduction from the 3-SAT problem to the problem of designing self-stabilizing programs from their non-stabilizing versions, which is a special case of adding nonmasking fault tolerance. While it is known that designing self-stabilization under the assumption of strong fairness is polynomial, we demonstrate that adding self-stabilization to non-stabilizing programs is NP-hard under weak fairness.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:12 ,  Issue: 3 )