By Topic

SIMON Says: Break Area Records of Block Ciphers on FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aysu, A. ; Dept. of Electr. & Comput. Eng., Virginia Tech, Blacksburg, VA, USA ; Gulcan, E. ; Schaumont, P.

While advanced encryption standard (AES) is extensively in use in a number of applications, its area cost limits its deployment in resource constrained platforms. In this letter, we have implemented SIMON, a recent promising low-cost alternative of AES on reconfigurable platforms. The Feistel network, the construction of the round function and the key generation of SIMON, enables bit-serial hardware architectures which can significantly reduce the cost. Moreover, encryption and decryption can be done using the same hardware. The results show that with an equivalent security level, SIMON is 86% smaller than AES, 70% smaller than PRESENT (a standardized low-cost AES alternative), and its smallest hardware architecture only costs 36 slices (72 LUTs, 30 registers). To our best knowledge, this work sets the new area records as we propose the hardware architecture of the smallest block cipher ever published on field-programmable gate arrays (FPGAs) at 128-bit level of security. Therefore, SIMON is a strong alternative to AES for low-cost FPGA-based applications.

Published in:

Embedded Systems Letters, IEEE  (Volume:6 ,  Issue: 2 )