By Topic

The Past, Present, and Future of Real-Time Control in Cellular Electrophysiology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jennifer A. Bauer ; Dept. of Bioeng., Univ. of Utah, Salt Lake City, UT, USA ; Katherine M. Lambert ; John A. White

For over 60 years, real-time control has been an important technique in the study of excitable cells. Two such control-based technologies are reviewed here. First, voltage-clamp methods revolutionized the study of excitable cells. In this family of techniques, membrane potential is controlled, allowing one to parameterize a powerful class of models that describe the voltage-current relationship of cell membranes simply, flexibly, and accurately. Second, dynamic-clamp methods allow the addition of new, “virtual” membrane mechanisms to living cells. Dynamic clamp allows researchers unprecedented ways of testing computationally based hypotheses in biological preparations. The review ends with predictions of how control-based technologies will be improved and adapted for new uses in the near future.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:61 ,  Issue: 5 )