By Topic

Generalized Higher Degree Total Variation (HDTV) Regularization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yue Hu ; Sch. of Electron. & Inf. Eng., Harbin Inst. of Technol., Harbin, China ; Greg Ongie ; Sathish Ramani ; Mathews Jacob

We introduce a family of novel image regularization penalties called generalized higher degree total variation (HDTV). These penalties further extend our previously introduced HDTV penalties, which generalize the popular total variation (TV) penalty to incorporate higher degree image derivatives. We show that many of the proposed second degree extensions of TV are special cases or are closely approximated by a generalized HDTV penalty. Additionally, we propose a novel fast alternating minimization algorithm for solving image recovery problems with HDTV and generalized HDTV regularization. The new algorithm enjoys a tenfold speed up compared with the iteratively reweighted majorize minimize algorithm proposed in a previous paper. Numerical experiments on 3D magnetic resonance images and 3D microscopy images show that HDTV and generalized HDTV improve the image quality significantly compared with TV.

Published in:

IEEE Transactions on Image Processing  (Volume:23 ,  Issue: 6 )