Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Robust MPC Tower Damping for Variable Speed Wind Turbines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Evans, M.A. ; Dept. of Eng. Sci., Univ. of Oxford, Oxford, UK ; Cannon, M. ; Kouvaritakis, B.

Model predictive control (MPC) is receiving attention in wind turbine controller design due to its ability to explicitly handle state and input constraints. Robust model predictive control (RMPC) additionally accounts for uncertainty in the future evolution of the system. Here, RMPC is compared with nominal MPC for the purposes of fore-aft tower damping of large wind turbines. The two controllers are identical save for their handling of the multiplicative and additive uncertainty in the prediction horizon. The comparison is performed by means of fatigue analysis in a state-of-the-art aeroelastic simulation package. State and input constraints are applied to a control model that is identified by data-driven methods. The robust controller bounds the uncertainty with a sequence of polytopes, which tighten the constraints to reduce constraint violations, while retaining the computational complexity of a quadratic program.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:23 ,  Issue: 1 )